首页 - 要闻 > 最难数学题(被叫做最难的数学题是什么猜想来着)

最难数学题(被叫做最难的数学题是什么猜想来着)

发布于:2024-08-15 12:10:06 来源:互联网

哥德巴赫猜想(Goldbach Conjecture) 公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11, 16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ¾ “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下: 1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”。1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”。1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数。1956年,中国的王元证明了 “3 + 4 ”。1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了 “1 + 4 ”。1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”。1966年,中国的陈景润证明了 “1 + 2 ”。最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。简单介绍一下,最有名的哥德巴赫猜想,希望对你有所帮助。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。

相关文章