首页 - 关注 > 导函数公式大全(求导法则和求导公式总结)

导函数公式大全(求导法则和求导公式总结)

发布于:2024-03-10 08:34:01 来源:互联网

1求导公式

正弦函数:(sinx)'=cosx

余弦函数:(cosx)'=-sinx

正切函数:(tanx)'=sec²x

余切函数:(cotx)'=-csc²x

正割函数:(secx)'=tanx·secx

余割函数:(cscx)'=-cotx·cscx

反正弦函数:(arcsinx)'=1/√(1-x^2)

反余弦函数:(arccosx)'=-1/√(1-x^2)

反正切函数:(arctanx)'=1/(1+x^2)

反余切函数:(arccotx)'=-1/(1+x^2)

2导数计算口诀

常为零,幂降次

对倒数(e为底时直接倒数,a为底时乘以1/lna)

指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna)

正变余,余变正

切割方(切函数是相应割函数(切函数的倒数)的平方)

割乘切,反分式

3导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。

相关文章